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Spectroscopic evidence against
nitric acid trihydrate
in polar stratospheric clouds
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HETEROGENEOUS reactions on polar stratospheric clouds (PSCs)

play a key role in the photochemical mechanism thought to be
responsible for ozone depletion in the Antarctic and the Arctic t'2.

Reactions on PSC particles activate chlorine to forms that are
capable of photochemical ozone destruction, and sequester
nitrogen oxides (NOx) that would otherwise deactivate the
chlorine 3"4. Although the heterogeneous chemistry is now well
established, the composition of the clouds themselves is uncertain.
It is commonly thought that they are composed of nitric acid

trihydrate 3, although observations have left this question
unresolved s-_4. Here we reanalyse infrared spectra of type I PSCs
obtained in Antarctica in September 1987 _s'_6, using recently
measured optical constants of the various compounds that might
be present in PSCs _7. We find that these PSCs were not composed
of nitric acid trihydrate but instead had a more complex composi-
tion, perhaps that of a ternary solution. Because cloud formation
is sensitive to their composition, this finding will alter our under-
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FIG. 1 & Computed spectra for ice, NAM and NAD are compared with
an observed spectrum (data points, with error bars) of PSCs. The num-
bers in the key correspond to the radius of the log-normal distribution
used in the calculated spectrum. The radius shown is that which gave
the best fit to the observations for that composition, lhe dotted horizon-
tal line is an estimate of the instrument noise level 1_. Data below that
level may represent random errors in the measurements, rather than
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a true value of the infrared optical depth. The error bars are 1_ based
on all of the frequencies included within a spectral window, b. As for
a except that a-NAT and p-NAT are considered, c, As for a except that a-
NAT, a-NAD and a-NAM are considered, d, As for a except that computed
spectra using room-temperature optical constants 2e for 2 M (i].2 wt%),
4 M (22 wt%), 8 M (40 wt%) and 15.7 M (70 wt%) liquid nitric acid solu-
tions are compared with the observed spectrum.

standing of the locations and conditions in which PSCs form. in

addition, the extent of ozone loss depends on the ability of the
PSCs to remove NOx permanently through sedimentation. The
sedimentation rates depend on PSC particle size which in turn is
controlled by the composition and formation mechanism 14.

The type 1 PSC composition was initially suggested to be nitric
acid trihydrate 3, solid solutions of nitric acid 3ts, or nitric acid

monohydrate _9. Subsequently, nitrogen was observed as a major

component of type ! PSCs _°'-_. Vapour pressure measurements 22

showed that nitric acid trihydrate is the stable crystalline form

of nitric acid at winter-time stratospheric temperatures and gas-
phase nitric acid concentrations• However, observed formation

temperatures of type I PSCs are often several degrees too low
to be consistent with nitric acid trihydrate _'6. Although this

inconsistency could be due to nucleation barriers _,

observations 7'_ suggest that other forms of nitric acid including

nitric acid dihydrate 9, supercooled solutions of nitric acid _'-_'m.

and ternary solutions of sulphuric acid, nitric acid and water _2 'a
could be present. Our current spectroscopic analysis of type I

PSCs over Antarctica now provides new insights into their
composition.

Infrared spectra of type I PSCs have been obtained over three

days in September 1987 _5_ over narrow spectral windows, free
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from gaseous absorption, using a Michelson interferometer.

Within each spectral window 7 500 frequencies were sampled.
The typical standard deviation of clear spectra in the windows

was used to establish an instrument noise level _. By comparing

spectra from clear and cloudy regions, a mean cloud optical

depth was determined in each spectral window. Calculations
demonstrated that these PSCs could not be made of water ice _-_.

However, lack of available optical constants at that time pre-

vented a determination of whether the particles were made of

crystalline forms of nitric acid, which are generally the favoured
candidates for PSC composition _'_'_9"22. Here we reanalyse these

spectra using newly measured optical constants of water ice,

nitric acid trihydrate (in the c_-NAT and 13-NAT forms), nitric

acid dihydrate (NAD), and nitric acid monohydrate (NAM) 17.
We also investigate amorphous solid solutions, a-NAT, a-NAD

and a-NAM, with compositions that crystallize upon heating to
form hydrates.

Because the various observed spectra are similar, we reanalyse

an average of four spcctra for 21 September 1987 (Fig. 1). Two
spectra were obtained at 14:08 14:10 universal time (t;x) near

105'W longitude and 84_S latitude, and two spectra were

obtained at 14:33 14:36 UT at 90' W and 87 S. During the

optical-depth analysis, these spectra were normalized to clear-
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sky spectra taken at nearby locations _5. We chose these four

spectra because their signal-to-noise ratio was high relative to

other spectra. The high signals were due to the relatively large

cloud optical depths, and because the Sun was close to the hori-
zon during the measurements which increased the optical path

length through the cloud. Lidar data suggest these PSCs were
at 15 18km altitude _5. Analyses of the observed spectral

dependence of the infrared optical depths suggests that the
radius of these particles was _0.8 !am, their number concentra-
tion was _1 cm 3, and their mass mixing ratio was _10 p.p.b.

(ref. 15). None of these derived particlc properties is very sensi-

tive to particle composition, as they are based on a portion of

the spectrum in which scattering dominates, as discussed further
below. Observations of the mass of sulphuric acid particles above

Antarctica in 1987 suggest that _5% of the mass of the PSCs

could be sulphuric acid 2_. There were ~8 sulphuric acid particles

per cm 3 in the altitude range of the PSCs observed 24. The smaller
number of PSC particles observed may represent lack of sensitiv-

ity of the infrared observations to small particles, rather than
incomplete nucleation of the sulphuric acid particles to form

PSC particles. As the sulphuric acid particles have low mass they
do not have an observable effect on the infrared spectra, and

because they should be uniformly distributed their spectral

features would be removed when our PSC spectra are normalized

to clear-sky spectra to obtain the PSC optical depths _5.
The observed spectrum at frequencies above 3,500cm

(Fig. I I is dominated by scattering of the solar beam, because
micrometre-sized ice and nitric acid particles are nearly transpar-

ent at these frequencies. The slope of the spectrum at these fre-

quencies is controlled by the particle size. Below 3,500 cm _ the

spectrum is sensitive to particle size, but also to the optical con-
stants of the materials because ice and nitric acid particles are

absorbing at these frequencies. Varying the number of cloud

particles results in a wavelength-independent scaling factor for

the optical depths. Wc performcd Mie scattering calculations of

the optical depth for each set of optical constants, assuming a

log normal size distribution for the particles with a standard
deviation cr = 1.5 and variable mode size. The optical depths for

a given mode size were then scaled to the data, and the mode
size varied to obtain the least mean-square deviation between

the calculated and observed optical depths.

Figure la shows that the observed PSCs are not composed of
ice. Ice has strong absorption features near 3,000 and 800 cm ',
which are absent in the data. We have minimized the strength

of these features in the calculated optical depth spectra by mak-

ing the ice particles relatively large. Increasing the particle size
to produce a still better fit at 3,000 cm _ produces a poorer fit L5

at frequencies above 4,000 cm _. NAM has absorption features
between 3,000 and 2,000 cm _, and near 1,200 cm _ that do not

appear in the data, and NAM is not absorbing enough near
3,300 cm Lto fit the data (Fig. la). NAD does not fit the spec-
trum well between 3,500 and 2,000 cm _, and has bands near

1,400cm _ and 1,200cm ' that are not observed (Fig. la).

Figure lh shows that a-NAT and [3-NAT have strong bands at

1,200 and 1,400cm _ which are not observed. Figure Ic shows
that a-NAT and a-NAD also have strong bands near 1,400 and

1,200 cm _ that are not observed. In general, all of the constit-

uents whose spectra have been calculated have strong absorption
bands that are not observed. In particular, NAT has bands that

are calculated to lie more than two standard deviations above

the observed spectra.

We performed many additional comparisons between
observed and calculated spectra. We varied the particle size and

the width of the size distribution, tried mixtures in which differ-

ent composition particles either coexisted or were in cloud layers

at different altitudes, explored shell and core combinations of

materials, and computed spectra for particles with oblate or

prolate shapes. None of these attempts resulted in a better match
between calculated and observed spectra than those shown in

Fig. 1.
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The calculated spectrum of a-NAM with particle sizes of

0.6±0.2 gm does agree with the observations (Fig. lc) because

a-NAM has relatively low imaginary refractive indices between

its major absorption bands from 1,000 to 1,500 cm _. The major

objection to a-NAM as a constituent of PSCs is that its nitric

acid vapour pressure is too large for it to occur in the

stratosphere "_. Moreover, we have examined the observed
infrared extinction in the region near 1,300cm _, and do not
find evidence for the strong band which a-NAM has at that

frequency.
Recent laboratory and theoretical work points to the possible

existence of ternary solutions of nitric acid, sulphuric acid and
water in PSCs L2 14 Given the low temperature at the locale of

our observations (near or below 192 K), as well as the dehydra-

ted and denitrified conditions of the lower stratosphere in Sep-

tember 1987, theory suggests that supercooled ternary solutions

would be _5 wt% sulphuric acid and 30 50 wt% nitric acid _4.
The refractive indices for amorphous nitric acid compounds dis-

cussed in this Letter, which should be similar to those of super-

cooled nitric acid 25, are available only for solutions more
concentrated than 50 wt'¼,. But room-temperature refractive

indices for less-concentrated nitric acid solutions are available 26,

and Fig. ld shows that these provide a much better fit to the

observations than any of the materials investigated in Fig. la
c. As the nitric acid concentration declines, as shown in Fig. ld,

the nitrate bands near 1,200 1,400 cm _ decrease in strength. A

solution less concentrated than 4 M (22 wt%) is required to fit

thc spectrum. However, the 3,000 cm-_ water band increases in
strength as the nitric acid concentration declines. A solution
more concentrated than 4 M is required to fit the spectrum above

3,000 cm '. At present no optical constants are available either

for ternary solutions, or for binary nitric acid solutions with
relevant compositions at stratospheric temperatures. Studies of

sulphuric acid binary solutions (which may have similarities to
nitric acid solutions), have found that the infrared spectra of

solutions containing <50% sulphuric acid are strongly tempera-

ture dependent 27. Quantitative determination of the nitric acid
concentration from the observed atmospheric spectra will

require measurements of the low-temperature optical constants

of ternary mixtures. Additional atmospheric spectra would also
be useful to search for changes in the composition of the particles

caused by variations in environmental conditions '4.

It has been suggested that there is a hemispheric asymmetry

in PSC composition, with NAT clouds existing in the Antarctic,

but other compounds in the Arctic 5. However, our results show

that the type I PSCs over Antarctica during September 1987, a

period with significant ozone loss, were not composed of NAT.
Our results imply that it is much more difficult to form NAT

than thought previously. Of course, we cannot rule out NAT

formation at other times and places than the ones we studied.
The extent of future ozone loss is controlled in part by the

ability of PSCs to permanently remove NOv from the strato-

sphere, so-called 'denitrification'. Large particles with rapid sedi-
mentation rates form when a small fraction of the pre-existing

particles nucleate to form crystals such as NAT. In contrast,

small particles form when liquid PSCs grow within all of the
stratospheric aerosols _4. Most theories for future ozone loss
assume that NAT is the principal component of PSCs. If so,

stratospheric cooling during the next century due to the green-

house effect may trigger an increase in the formation of NAT
clouds in the colder Arctic stratosphere. The resulting enhanced
sedimentation of nitric acid has been predicted to reduce the

sensitivity of stratospheric ozone to anthropogenic perturbations

in nitrogen oxides -_. But if NAT is as difficult to form as our

study implies, then only smaller ternary solution particles may

form as the stratosphere cools. These smaller particles would

not efficiently remove nitric acid from the stratosphere at tem-

peratures above the frost point.
Massive chlorine-catalysed ozone loss such as observed in the

Antarctic ozone hole may require denitrification. Denitrification
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of the stratosphere by ice clouds (type II PSCs) is inefficient if

type I PSCs contain NAT 29. However, the higher vapour

pressures of ternary solutions would greatly speed the transfer
of nitric acid from type I to type II PSCs. Therefore the lack of

evidence for type I PSCs containing NAT implies that nitrogen

removal from the stratosphere may be more closely related to

the formation of ice particles than it is to nitric acid particles 3.
It has also been suggested that enhancements in the concentra-

tions of stratospheric nitric acid and water vapour from future

fleets of supersonic aircraft might lead to significant expansions

of type I PSCs composed of NAT 3°. But the variation in PSC

abundance for a given change in nitric acid vapour supply may

be quite different for NAT than for other PSC components.

NAT formation should occur at a definite onset temperature,

whereas particles composed of ternary solutions increase gradu-

ally in size and coverage as the concentration of nitric acid vap-

our increases. Assuming a NAT composition, regions currently

near the NAT formation point would experience a sudden dras-

tic increase in PSC abundance if the nitric acid vapour concen-

tration was increased past the threshold value. In contrast, only

a modest change in the abundance of ternary aerosols would

occur as the existing aerosols would swell as conditions changed.
In areas far from the NAT threshold, small changes in the nitric

acid vapour abundance would have no effect on NAT aerosols,

but the ternary aerosols would change their size and hence their
potential to cause ozone loss.

Owing to the complexity of stratospheric chemistry and PSC

microphysics, it is not possible to anticipate the quantitative
changes that might occur in theoretical studies which have

assumed PSCs are composed of NAT. But it is clear that the

properties of other possible PSC constituents are sufficiently

different from those of NAT that future theories should not treat

PSCs as though they were composed only of NAT. It is also
clear that we need to understand better the environmental condi-

tions that control PSC composition. []
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